

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Defworld 0.0.1 documentation

Defworld

	Defworld
	Rule

	Agent

	Examples
	Linear Equation Solver

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Yu Jae-myoung.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Defworld 0.0.1 documentation

Defworld

Defworld is a multiagent simulation library for interactive storytelling.

Rule

Each agent manipulates ideas on its working memory(WM) according to a set of
IF-THEN style rules. For example, the following code means “If Socrates is a
human, then Socrates is mortal”.

Rule('socrates-mortal', [# A 'socrates-mortal' rule:
 Fact('Socrates is a human'), # If Socrates is a human,
],[# then
 Fact('Socrates is mortal')]) # Socrates is mortal.

defworld.patterns.Fact is a WM item about facts. The
‘socrates-mortal’ rule append a fact “Socrates is mortal” on the WM when there
is a fact “Sorcrates is a human” on WM.

On the other hand, some rules executes actions. For example, the follwing code
means “If the phone rings, answer the phone”

Rule('answer-phone', [# A 'answer-phone' rule:
 Fact('the phone rings'), # If the phone rings,
],[# then
 Action('answer the phone')]) # answer the phone

defworld.patterns.Action is also a WM item. This ‘answer-phone’ rule
append the defworld.patterns.Action , ‘answer the phone’ on WM, and
then ActionModule executes the action in the designated way.

Every WM item has a name and slots. For example,

Fact('human', name='Socrates')
Action('answer', target='phone')

Slot values could be variables. Defworld fills these variables with pattern
matching.

Rule('human-mortal', [# A 'human-mortal' rule:
 Fact('human', name=Var('x')), # If x is a human
],[# then
 Fact('mortal', name=Var('x'))]) # x is mortal

If there is a fact Fact('human', name='Socrates') on WM, then a new item
Fact('mortal', name='Socrates') is appended on WM.

Agent

An agent has initial facts and rules. Initial facts are loaded on WM when the
agents are created.

Agent(
 # initial facts
 [Fact('human', name='Socrates')], # A human whose name is 'Socrates'
 # rules
 [Rule('socrates-mortal', [# A 'socrates-mortal' rule:
 Fact('human', name=Var('x')), # If x is a human,
],[# then
 Fact('mortal', name=Var('x'))]) # x is mortal.
])

defworld — Interactive storytelling

	defworld.agent — Agents

	defworld.basic — Basic types

	defworld.exception — Errors

	defworld.patterns — Patterns

	defworld.rete.node — Rete network

 Copyright 2012, Yu Jae-myoung.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Defworld 0.0.1 documentation

 	Defworld

defworld.agent — Agents

	
class defworld.agent.Agent(initial_facts, rules)

	A forward inference agent

	
activate()

	Activate the rule on the top of agenda

	
linearize()

	Return linearized rete tree

	
class defworld.agent.WorkingMemory(initial_facts=[])

	A working memory of an Agent
which stores patterns.Fact and patterns.Entity

	Parameters:	initial_facts (a list of patterns.Fact) –

	
append(fact)

	Append a Fact to the WorkingMemory

	Parameters:	fact (patterns.Fact) – a pointer to PixelWand to compare

 Copyright 2012, Yu Jae-myoung.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Defworld 0.0.1 documentation

 	Defworld

defworld.basic — Basic types

 Copyright 2012, Yu Jae-myoung.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Defworld 0.0.1 documentation

 	defworld — Interactive storytelling

defworld.exception — Errors

	
exception defworld.exception.DiffFactName

	raised when trying to match facts whose names are different.
To prevent Not test catching the exception.

 Copyright 2012, Yu Jae-myoung.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Defworld 0.0.1 documentation

 	Defworld

defworld.patterns — Patterns

	
class defworld.patterns.Assign(var, pattern)

	Assign a fact to a variable

	Parameters:	
	var (basic.Var) – a variable

	pattern (Fact) – a pattern of the fact to assign

	
match(other=None, item=None)

	Return pattern matching

	
class defworld.patterns.Entity(_name, *args, **kwargs)

	A Fact represents a unique object.

	
apply(wm)

	Alter the entity the name of which is same with one of this entity.
If the working memory does not have one, then just append this to it.

	Parameters:	wm (agent.WorkingMemory) – An agent’s working memory

	
class defworld.patterns.Fact(_name, *args, **kwargs)

	

	Parameters:	
	_name (basestring or basic.Var) – a kind of Fact

	args – ordered values

	kwargs – slot values

	
apply(wm)

	Append self to the working memory

	Parameters:	wm (agent.WorkingMemory) – An agent’s working memory

	
class defworld.patterns.Func(func)

	Function wrapper to evaluate the function at the time the rule is
activated.

	Parameters:	func – the function to evaluate

	
class defworld.patterns.Retract(fact)

	Retract a fact from the working memory

	Parameters:	fact (Fact) – the fact to retract

	
class defworld.patterns.Template(name, kind=<class 'defworld.patterns.Fact'>)

	Template for a Fact or Entity

human = Template('human')
human('Socrates') == Fact('human', 'Socrates')

	Parameters:	
	name – the name of Fact

	kind – Fact (default) or Entity

	
class defworld.patterns.Update(fact, *args, **kwargs)

	Update a fact in the working memory

	Parameters:	
	fact (Fact) – the fact to update

	args – ordered values

	kwargs – slot values

 Copyright 2012, Yu Jae-myoung.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Defworld 0.0.1 documentation

 	Defworld

defworld.rete.node — Rete network

	
class defworld.rete.node.Kind(wm)

	Kind nodes manager

 Copyright 2012, Yu Jae-myoung.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Defworld 0.0.1 documentation

Examples

	Linear Equation Solver
	Terminal condition

	Subtracting a same number from both side

	Full source code

 Copyright 2012, Yu Jae-myoung.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Defworld 0.0.1 documentation

 	Examples

Linear Equation Solver

You can use defworld library not only for interactive storytelling, but also
for rule-based application. In this example, I explain how to build a linear
equation solver using defworld.

A linear equation is an equation in which each term is either a constant or the
product of a constant and a single variable, e.g. 2x + 3 = 5. Solving methods
are quite easy: subtract a same number from both side or divide both side by a
same number repeatedly until the unknown remains solely on left side and a
constant on right side.

Terminal condition

Let’s define the terminal condition, first.

Rule('x = b', [
 Not(solution()), # not yet solved
 equation(x, b) # x = b
],[
 solved(b) # the solution is b
]),

solution is a defworld.patterns.Template for the solution, defined
by the following:

solution = Template('solution', Entity)

equation is a defworld.patterns.Template for an
defworld.patterns.Entity represents the equation.

equation = Template('equation', Entity)

solved is also a function returns an defworld.patterns.Entity.

@Func
def solved(x):
 print x.value
 return solution(value=x)

This function is called when the rule ‘x = b’ is fired. That’s why solved
is decorated by defworld.patterns.Func.

To sum up, the ‘x = b’ rule is fired when the equation is not yet solved and
is in the form of ‘x = b’. Once the rule is fired, the solution is appended on
the agent’s working memory and printed out.

Subtracting a same number from both side

If there is an equation x + 2 = 5, you just subtract 2 from both side to
solve this equation. In this section, I show you how to implement this rule.

Rule('expr + a = b', [
 Not(solution()), # not yet solved
 equation(add(expr, a), b) # expr + a = b
],[
 equation(expr, Sub(b, a)) # expr = b - a
]),

That’s it. add is a function returns a defworld.patterns.Fact
represents addition, defined by the following:

add = Template('add')

Sub is a function decorated by defworld.patterns.Func which
returns the difference between two value.

Full source code

This is the full source code.

from defworld.agent import Agent
from defworld.basic import Var
from defworld.patterns import Entity, Func, Not, Rule, Template

if __name__ == '__main__':
 solution = Template('solution', Entity)

 a = Var('a')
 b = Var('b')
 expr = Var('expr')
 x = Entity('unknown')

 product = Template('product')
 add = Template('add')

 equation = Template('equation', Entity)

 @Func
 def Div(a, b):
 return a/b

 @Func
 def Sub(a, b):
 return a-b

 @Func
 def solved(x):
 print x.value
 return solution(x)

 agent = Agent([
 equation(add(product(2,x), 3), 5) # 2x + 3 = 5
],[
 Rule('x = b', [
 Not(solution()), # not yet solved
 equation(x, b) # x = b
],[
 solved(b) # the solution is b
]),

 Rule('a * expr = b', [
 Not(solution()), # not yet solved
 equation(product(a, expr), b) # a * expr = b
],[
 equation(expr, Div(b, a)) # expr = b / a
]),

 Rule('expr + a = b', [
 Not(solution()), # not yet solved
 equation(add(expr, a), b) # expr + a = b
],[
 equation(expr, Sub(b, a)) # expr = b - a
]),
])
 agent.match()
 agent.run() # print 1

 Copyright 2012, Yu Jae-myoung.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	Defworld 0.0.1 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 defworld	

 	
 	
 defworld.agent	

 	
 	
 defworld.basic	

 	
 	
 defworld.constraints	

 	
 	
 defworld.exception	

 	
 	
 defworld.patterns	

 	
 	
 defworld.rete.node	

 Copyright 2012, Yu Jae-myoung.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	Defworld 0.0.1 documentation

Index

 A
 | D
 | E
 | F
 | K
 | L
 | M
 | R
 | T
 | U
 | W

A

 	

 	activate() (defworld.agent.Agent method)

 	Agent (class in defworld.agent)

 	append() (defworld.agent.WorkingMemory method)

 	

 	apply() (defworld.patterns.Entity method)

 	

 	(defworld.patterns.Fact method)

 	Assign (class in defworld.patterns)

D

 	

 	defworld (module)

 	defworld.agent (module)

 	defworld.basic (module)

 	defworld.constraints (module)

 	

 	defworld.exception (module)

 	defworld.patterns (module)

 	defworld.rete.node (module)

 	DiffFactName

E

 	

 	Entity (class in defworld.patterns)

F

 	

 	Fact (class in defworld.patterns)

 	

 	Func (class in defworld.patterns)

K

 	

 	Kind (class in defworld.rete.node)

L

 	

 	linearize() (defworld.agent.Agent method)

M

 	

 	match() (defworld.patterns.Assign method)

R

 	

 	Retract (class in defworld.patterns)

T

 	

 	Template (class in defworld.patterns)

 	

 	Typed (class in defworld.constraints)

U

 	

 	Update (class in defworld.patterns)

W

 	

 	WorkingMemory (class in defworld.agent)

 Copyright 2012, Yu Jae-myoung.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Defworld 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Yu Jae-myoung.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

defworld/constraints.html

 Navigation

 		
 index

 		
 modules |

 		Defworld 0.0.1 documentation »

defworld.constraints — Builtin constraints

		
class defworld.constraints.Typed(type, exact=False)

		Type checker.

		Parameters:		
		type (type) – type to check the given value

		exact (bool) – if it’s True it tests only its type. otherwise
it tests the type’s direct/indirect subclasses.
default is False

 © Copyright 2012, Yu Jae-myoung.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 		latest

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

defworld/node.html

 Navigation

 		
 index

 		
 modules |

 		
 previous |

 		Defworld 0.0.1 documentation »

 		defworld — Interactive storytelling »

defworld.node — Rete network

		
class defworld.node.Kind(wm)

		Kind nodes manager

 © Copyright 2012, Yu Jae-myoung.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 		latest

_static/down-pressed.png

